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ABSTRACT

This paper addresses the design of two-level Power
System Stabilizers wusing an optimal reduced order
model whose state variables are torque angles and
speeds. The reduced-order model retains their physi-
cal meaning and is used to design a two-level linear
feedback controller that takes into account the re-
alities and constraints of the electrical power systems.
The two-level control ‘strategy is used and a global
control signal is generated from the output variables
to minimize the effect of interactions. Effectiveness
of this controller is evaluated and example, the
multimachine system, is given to illustrate the
advantages of the proposed method. Responses of the
system with two-level scheme and optimal reduced
order scheme are included for comparative analyses.

1. INTRODUCTION

The design of PSSy can be formulated as an opti-
mal linear regulator control problem whose solution
is a complete state control scheme[l]. Thus, the
implementation requires the design of state estimators
[2]. These increase the hardware cost and reduce the
reliability of the control system. These are the
reasons that a control scheme uses only some desired
state variables such as torque angle and speed. Upon
this, a scheme referred to as supoptimal control
is obtained but only some state variables are used in
the implemented control scheme while the others are
omitted for convenience [3]. Obviously, This approach
is arbitrary and cannot be accepted on faith. Perfor-
mance degradation is not evaluated for general systems
under different conditions. The recent approach
using optimal reduced order model is obtained [4][5].
However, the optimal control strategy is also wused
for the reduced order model of the multimachine system,
the computation of an optimal controller becomes
extremely diffecult and time consuming as the order
of the system increases. For an nth-order system it
is necessary to solve an n(n+l)/2 Riccati equations
in order to calculate the controller gain. And the
problem formulation itself is not straight forward as
it is complex to determine the design parameters in
the performance criterion as the order of the system
increases. To overcome these difficulties, the former
paper concerned with the development of multi-level
optimal stabilization of interconnected power system

in ref.[6] is applied to the proposed approach. The
overall power system 1is decomposed into separate
subsystems, each subsystem comprising one machine.

At the subsystem level, an optimal feedback controller
is derived by output feedback of each machine. The
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order of this model is obviously lower than that of
the overall system and the method proposed in ref [6].
Consequently, considerable savings in computer memory
are achieved. The controllers thus determined at the
subsystem level depend only on local information
operating to the particular machine. And, since only
the output feedback is used via optimal reduced order
model, the control strategy can be implemented easily.

In order to take into account the interaction
between the different subsystems, a global controller
is designed at a higher level [7]. At thislevel, all
subsystems will transfer the necessary information to
achieve the global objectives. In this paper, the
global gain is obtained from the optimal reduced order
model of the whole system by using only output feedback
The evaluation of the global gain is much easier than
the overall system optimal state feedback gains because
the optimal reduced order model is used.

The control strategy proposed here is applied to
three-bus, two-machine system. The results of the
study are presented to demonstrate the effectiveness
of the two-level optimal output feedback controller.
A comparison between the performance of the prosposed

controller and that of the optimal reduced order
method and the two-level control strategy 1is also
included.

The attractive features of the two-level optimal
output feedback stabilizers design are as follows:

1) The output state variables are some desired or
available variables such as torque angles, and
speeds, thus, the state variables of the reduced
order model retain their physical meaning.

2) Local controllers determined depend only on local
output information pertaining to the subsystem.
Consequently, a considerable savings in computa-
tion effort at the (machine) subsystem level is
achieved and no estimator is needed.

3
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Interaction between the different subsystem is
minimized by the use of the global controller
gain at a higher level using the output state
variables of the overall system via optimal
reduced order model. The evaluation process is
much easier than the optimal control strategy and
the transient response is much better also.

As a matter of fact this paper is an extension of
the optimal reduced order method proposed by Ali
Feliachi et. al [4][5] and the two-level optimal
stabilization method proposed by Y.L. Abdel-Magid and
Gamal M. Aly [6].

2. BACKGROUND
2.1 Optimal Reduced Order Model

The linearlized model of the electrical power
system can be described by the following state space
representation:

X=AX+Bu [¢D)
where

nxl state vector )
constant matrices of appropriate
dimensions

> 1<l
o]
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Since the reduced order model derived in refs. [4][5]
is used in the following study, the process of eva-
luating the reduced order model is abbreviated as
follows without proof.

The reduced order model is derived using the
following system whose first m variables are the
desired variables 2z, which are speeds and torque
angles in the proposed approach:

The similarity transformation T is obtained in ref [4].

X=A%+Bu (2
Z = [In,0] X (3)
where

A -

X =7TZX

A=7X1~

A -

B=TE3B

Ip = mx m identity matrix

Assume that the eigenvalues of & are distinct,
this will actually be the case in the power system.

Let V=[Vy, V2, ...Vn] where V; is the right
eigenvector of A associated with Aj. Let W=V~
Led
Define d =WX
Then: . @)
¢ =A8+Tu (5)
Z= D‘P

where

A= WAV = diagonal (Rar A2 0 veeerda)

T'= WB

D=[Im, 0]V
These equations can be re-arranged and written in
partition form as:

d; =A1g1+r u (6)
¢z= 2P2 L, . (7)
Z= D ¢1+ D2¢2 (8)

where

A; contains modes to be retained
Az contains modes to be eliminated

Assume the reduced order system we are sought to
determine will be of the form as follows:

=FZ + Gu (9

The evaluation algorithm of F and G proposed in ref.
{4] are abbreviated as follows:

= D, A; DT?
¥ 1As P2 (10)

Let Vj be the modal matrix associated with eqn.(10)

Define
F = VZIF Vgu= diagonal (25,42, «-++ Am) (11)
G = VG C2)
C = ValD: (13)
r,= vgip,T, (14)
Then § = CA,- ¥ (15)
A= ~(F+ Frp? (16)
R = -A3 an
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Let  @; = Admwt i , i=1,2,.v..., n-m
Then Az = diagonal (a,;, @;+ -+ves @n_m)
The (i,j)th element of the m x p matrix is given
by:
Ry
83 =X.~“+a, (18)

where the subscript * denotes complex conjugate

A=A (19)
Let k=T,+cT, (20)
Then G= K +AT, (21)
And G= VaG (22)

2.2 Two=level Optimal Stabilization

The method proposed in ref.[6] is abbreviated as

follows:
A multi-machine interconnected system S can be

described by a linear model of the form
$: X = AX + Bu (23)

Where X is an n-dimensional state vector and u
is an m-dimensional control vector. A and B are
constant matrices of appropriate dimensions. The
system in eqn.(23)can be considered to be composed of N
interconnected subsystems, each subsystem Sj, being
described as

Si:
Xi=RAiiX; + Byus + hi(x), i=1,2,...N (24)
such that
X=[X1Tr Xle “e ey XNT]T (25)
and
N
h(x)= X A, x,
=,
i

The two-level control strategy will be of the form

2 £
u.= u; + uy 27

uf is a local feedback control vector assuming
no interactions between subsystems, i.e., hj(x)=0.
ug represents a global control signal that compensates
£6r the effect of the presence of coupling.

The global signal u8 is determined such that

Bu? + CX =0 : (28)
where )
Cij= A yj . 145 (29)
=0 i=j
And u = -B'CX (30)

where B' is the pseudo-inverse of B, defined as
g' = [B"817 BT :

Thus uf= -[BTB]Z BTCX = -GX (31)

where G=B'C=[BTB]-13T; is so called the global gain
matrix

Authorized licensed use limited to: Tamkang Univ.. Downloaded on March 28,2023 at 08:10:15 UTC from IEEE Xplore. Restrictions apply.



3. CONTROL STRUCTURE

In order to stabilize the overall system S, the
two-level control strategy of the form is shown in
eqn.(27).

The local optimal
determined as follows:

Assuming zero interactions at the
then

control u? can be

feedback .
i

local 1level,

X=A.X+ B, ub ,
is 1 it $

i=1,2, ...N (32)
represents N decoupled subsystems.

These equations can be re-arranged and written in
the form as:

f{{: A..X.+ B ..u (33)

with __ _T T T
Xi= [Xip, Xia]

where
2;, modes to be retained
Xie

modes to be deleted

Using the expressions given in the section 2, a
reduced order model of subsystem i'is obtained

- _ 2
Xip= FiXip + Giui '

i=1,2, ...N (34)

The performance of -each subsystem is measured
when the quadratic cost

(35)

1{co
- T - T R
J;=-j (R QX o+ UhRU;)AL

attains its minimum value when an optimal control u.ﬂ
is applied to each subsystem. Q;j and R;j are symetric
positive semidefinite and positive definite matrices,
respectively.

The optimal uj minimizing eqn.(35) can be deter-
mined as

4
B oKX, (36)
Ki= R7GE, (37
where P; is the solution of the Riccati equation:
P,F, + FiP,- P ,G,R;'G P, + Q,=0 (38)

A multimachine interconnected system S shown in

eqn.(23) can be re-arranged and written in the form
as:

- l= L} v L}

X A'X + B'u (39)
with ‘ T (T T

X'=(x)0, X7
where T r r T

XP = (X0 X h veen Xy, ]

ST ST =T T
Xy = [Xpuv Rpgs wees Xyl
Using the expressions given in section 2. a

reduced order model of the whole system S is obtained
as

X; = F'X:+ G'u

(40)
The global signal u® is determined such that
G'uf+ crx/=p
where cly,; = F'y 1743
= i=1
(41)

From eqn.(31), we get the global gain matrix G as

¢ - [G'7g' 171 g T (42)

The overall control strategy can be shown in Fig.l

<——Signals from
other

subsystems

Fig.l Two-level optimal control strategy via output
feedback

4. SYSTEM STUDY

The model given in [6] is

X=AX+3Bu (43)
where
XT= (AW, Ad . Al AVe, OwW; DG, Ak, AVeg ]
-0.244 -0.0747 -0.1431 0O 0 0.0747 0.0041 0O
377 0 0 0 0 0 0 0
0 -0.046 -0.455 0.244 0 0.046 0.13 0O
A= 0 -398.56 -19498.8 -30 0 '398.58 " -3967 0
0 0.178 -0.0433 0 -0.2473 -0.178 -0.146 0
0 0 0 0 376.9% 0 ¢ 0
0 0.056 0.1234 o0 0 -0.0565 -0.3061 0.149
Q -677.39 -10234.22 0 0 677.78 -13364.16 -50
B = 0 0 Q 25000 0 0 0 0 T
0 0 0 o} 0 0 0 25000
Simulation results indicated that the system

To improve the system
scheme, the system is

response is highly oscillatory.
damping using the two-level
decomposed as follows:

1
Machine (1): X1 = [&Wr, A 4 A€q 1 AVe: 1°
R T
Machine (2): X, = [AWx A0z L6442 Vp; ]

The decomposed system and control matrices are:
For system 1:

v

.§-0.244 -0.0747 -0.1431 0
s 2| 377 0 0 0
-7 o] -0.046 -0.455 0.244
o] -398.56 -12498.3 -50.0 J
B = [0, 0, 0, 25000]T
The eigenvalues of A} are -0.127 * j5.206 and

-25.22 * j64.38,
Obviously, the modes that should be retained are

the mechanical modes -0.127 * j5.206. Using the
expressions given in section 2.1, a reduced order
: -
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model is obtained.

ilr = F;X;, + Grus (44)
where .
’ R;p = [&w,, 00,17
F -0.26 -0.07
! 377 0
T
G: = {-0.1826, -0.734]
For the comparative reason, the state weighting

matrix Q1 and control weighting matrix R] are chosen as
that used in refs. [4]{5] and [6],

1 0]
Q:= g 1oJ + Ry =1
The values of the feedback control gains are ~
calculated as follows:
Ky = [-49.3107  -0.725]
For system 2:
-0.2473 -0.178 -0.146 0
_ 377 0 0 0
- 0 -0.0565 -0.3061 0.1492
0] 677.78 -13364.1 -50.0

ZSOOO]T

B=[0 0 0

The eigenvalues of Ay are -0.988 +j8.35 and -25.19
+j37.13
Obviously, the modes that should be retained are

the mechanical modes -0.988 £3j8.35. Using the expre-
ssions given in section 2.1 a reduced order model is

obtained.

%}r = F2Xz,+ G,u, (45)
where:
Xee= Vw,, A, 1T
P o= [—0.18 —0.18]
2 377 0
G = [-0.2668, -2.6202]
For the comparative reason,the state weighting

matrix Qy and control weighting matrix R) are chosen as
that used in refs. [4][5] and [6].

11 0
Q2 _[O 10} , Rz =1

The values of the feedback gains are calculdted
as follows:
KZ = [ -32.8413, -0.6864]

From equation (39), the interconnected system S can
be rearranged and written as:

X' = A'X'" + B'u 46)
where
-0.244 -0.0747 O 0.0749 -0.1431 0 0.0041 0
377 0 0 0 0 0 0 0
0 0.178 -0.2473 -0.178 -0.0433 0 -0.146 0
wol 0 0 376.99 0 0 0 0 0
0 -0.46 0 0.046 -0.455 0.244 G.13 0
0 -398.36 0 378.38 ~19498.8 -50 -3967 0
0 0.056 0 -0.0565 0.1234 0 -~0.3061 (.149
0 -677.39 0 677.7¢ -10234.22 0 -13364.16 -50
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25000 O 0 T

0 0o 0 0 O
B'= '
25000

o 0 o 0 0 0 0

X'= [&wy, AD;, AW, , D65, Aely, AV, Aelz, AV, ]

The eigenvalues of the original system are given in

Table 1
Table 1 SYSTEM EIGENVALUES
-0.09 = §9.84 S25.17 + §67.8 |
-0.0017 -25.24 £ 330.31
-0.243

The modes that should be retained are the modes
-0.09+39.84, -0.0017, -0.243 . Using the.optimal reduced

order method, the following reduced order model is
obtained with the form of eqn.(40):
X! = F'x,+ c'u “n
where
-0.237 -0.07 -0.007 0.073\
po | 377 0 0 0
-0.059 0.18 -0.188 -0.184
0 0 377 0 |
oo [-0.022 -0.15  0.009 0.23 ]r
0.007 0.11 -0.029 ~0.35 J

o - T
Xi= &w, A0, + AW, + NG, ]

By ref.[8], it can be checked that the assumption
of weakly coupled subsystems is not satisfied in this
case and the global signal needs to be calculated.

The global control matrix G is evaluated from

eqn.(42) and given by

G = 0.118 -0.36 0.02 -0.209
0.0975 ~0.2974 0.0141 -0.1465
After the interconnected system level control,

the interconnected system S in eqn.(43) can be written
as follows:

X=AX+Bu (48)
where

X' [AWL 88,0 A€ AVey AW, A8, A€, AVr, ]

( 0 0 0 0 0 0 0 0

377 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

A= "-2950 8601 -19499 -50 -500 5624 -3967 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0
©o 0 0 0 0 0o o0 o0
L 2438 6758 -10234 0 -353 430 -13364 -50

J

It is shown from egn.(48) that the interaction
between subsystems should be minimized by wusing the
output states feedback control only.
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X -3
The transient responses of the angular frequencies &SXIO T T T ¥
with and without global control to a 5% change in the Aw,
mechanical torque of machine 1 are shown in Figure 2. .
(piu)
0-4
2’1 T T T T
Aw
(p.u.)
Proposed
.. — Two-Level
........ Optimal Reduced Order Method
4 L 1 1
2 3 4 5
with global gain
—— . —— without global gain 4
Aw, T T
1 L ] (p.u.) st e e
2 3 4 5
Aw L T T |
2
(p-u.)
-10 v J
| ——— troposed
—— . ~—— Two-Level
“ ———————— Optimal Reduced Order Method
—15 1 1 L .
1 0 1 2 3 4 5
with global galn J Fig 3. ‘l‘ransifant response follm:ling a 5% change in
~— .— without global gain mechanical torque of machine | .
x10-4
-8 i i L1 1 2 . . ;
0 1 2 3 4 5 bw,
(p.u.)
Fig. 2 Transient responses of the angular frequencies
) with and without global control to a 5% change
in the mechanical torque of machine ] .
The overall system eigenvalues are given. in ! {
Table1l. and the results in refs. [41[51(6] are listed - J’ |
for comparative analyses. ! Proposed
\ | Two-Level

Optimal Reduced Order Method

Table 11 SYSTEM EIGENVALUES \
_6 1 L] 1 i
0 1 2 3 4 5
Optimal Reduced| Two-Leval Proposed Method
optimal [1] ] order(41(51] Stabilization [6]]
-0.74%39.88 | -0.6 +310.2 -0.0305 £30.1356 ) -3.8171 + j8.5218 I .
-1.91¢31.85 ] -1.2 £31.91 -0.0744 +30.1010 | -8.5314 + §18.3596
-25.17% j6.78 ) -23.3 £j67.2 -0.0925 ~16.9549 £3119,9542 g R
-25.24 % 330 3] -2.49* j29.8 -5.8469 ~21.3228% j66.0701
It is shown from Table II. That the relative E
stability of the proposed method is much better than
others.
The transient responses of the angular frequencies Proposed 1
T+~ Two-Level

to a 5% change in the machanical torque of machine 1
and machine 2 are shown in Figure 3 and Figure 4
respectively.

Optimal Reduced Order Method

The transient responses following a 5% change in
the mechanical torque of both machines at the same
time are shown in Figure 5. Transient response following a 5% change in

Fig 4. .
mechanical torque of machine 2.
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x10-4
T T T T
Awy
(peu.)
M e T e R ]
/
f 1
N/ —— . —— Two-Level’
\/ - Optimal Rediced Order Method
-15 1 1 1 1
0 i 2 3 4 5
x10-3
Aw, T U T T
(peus) gpl N 1
~ / \/ M e T e e
0 R
/
!
054/ [ | ]
H
{
iy J
f
/
?
Y ==
< Tmmeemes Optimal Reduced Order Method
-2 L 2 ) !
0 1 2 3 4 5
Fig 5. Transient response following a 5% change in
the mechanical torque of both machines at

the same time.

trom Figure 3-5, it seems like the transient responses
the two-level method [6] may be better than the
in some cases. The proposed method
the

of
proposed method

is still charming and worthy of suggesting for
following reasons:
1. The two-level method uses all states as control

signals, but however the proposed method uses only
the output states such as torque angles and speeds.
This takes into account the realities and con-
straints of the electrical power system and reduces
the hardware cost and increases the reliability of
the system.

2. From Table 1II, it is shown that the relative
stability of the proposed method is much better
than the others. This results from that the optimal
reduced order model can retain the worst eigen-
values [4] [5].

3. It is simpler to design a PSS with a reduced ordetr

model than a whole system model.

5. CONCLUSION

Optimal output states feedback stabilization of a
multimachine interconnected system is achieved using a
two-level control strategy. Local controllers deter-
mined at the lower level depend only on local output
information pertaining to the particular subsystem.
Consequently, a considerable savings in computational
effort at the subsystem level is achieved. The optimal
reduced order model is used to retain the physical
meaning of the output states. By wusing the output
feedback only, this approach reduced the implementation
cost (hardware) increases the reliability of the
control system. Interaction between the different

and
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subsystem is minimized by use of the global controller
at a higher level with only output feedback. Thus, a
new optimal two-level control strategy by using only
the output states feedback is reached. The results
obtained with the study systems demonstrate that the
proposed controller is very effective and has the high

relative stability.
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